unidad 4
Microondas y Satélites
MICROONDAS Y SATELITES
4.1. Comunicaciones con microondas: guías de onda, estaciones de microondas, y radares
Comunicación vía microondas. Básicamente un enlace vía microondas consiste en tres componentes fundamentales: el transmisor, el receptor y el canal aéreo. El transmisor es el responsable de modular una señal digital a la frecuencia utilizada para transmitir, el canal aéreo representa un camino abierto entre el transmisor y el receptor, y como es de esperarse el receptor es el encargado de capturar la señal transmitida y llevarla de nuevo a señal digital.
El factor limitante de la propagación de la señal en enlaces microondas es la distancia que se debe cubrir entre el transmisor y el receptor, además esta distancia debe ser libre de obstáculos. Otro aspecto que se debe señalar es que en estos enlaces, el camino entre el receptor y el transmisor debe tener una altura mínima sobre los obstáculos en la vía, para compensar este efecto se utilizan torres para ajustar dichas alturas.
Guía de onda
En electromagnetismo y en telecomunicación, una guía de onda es cualquier estructura física que guía ondas electromagnéticas.
Algunos sistemas de telecomunicaciones utilizan la propagación de ondas en el espacio
libre, sin embargo también se puede transmitir información mediante el confinamiento de las ondas en cables o guías. En altas frecuencias las líneas de transmisión y los cables coaxiales pres entan atenuaciones muy elevadas por lo que impiden que la transmisión de la información sea la adecuada, son imprácticos para aplicaciones en HF(alta frecuencia) o de bajo consumo de potencia, especialmente en el caso de las señales cuyas longitudes de onda son del orden de centímetros, esto es, microondas.La transmisión de señales por guías de on
da reduce la disipación de energía, es por ello que se utilizan en las frecuencias denominadas de microondas con el mismo propósito que las líneas de transmisión en frecuencias más bajas, ya que se presentan poca atenuación para el manejo de señales de alta frecuencia.Este nombre, se utiliza para designar los tubos de un material de sección rectangular, circular o elíptica, en los cuales la energía electromagnética ha de ser conducida principalmente a lo largo de la guía y limitada en sus fronteras. Las paredes conductoras del tubo confinan la onda al interior por reflexión, debido a la ley de Snell en la superficie, donde el tubo puede estar vacío o relleno con un dieléctrico. El dieléctrico le da soporte mecánico al tubo (las paredes pueden ser delgadas), pero reduce la velocidad de propagación.
En las guías, los campos eléctricos y los campos magnéticos están confinados en el espacio que se encuentra en su interior, de este modo no hay pérdidas de potencia por radiación y las pérdidas en el dieléctrico son muy bajas debido a que suele ser aire. Este sistema evita que existan interferencias en el campo por otros objetos, al contrario de lo que ocurría en los sistemas de transmisión abiertos.
Principios de operación
Dependiendo de la frecuencia, se pueden construir con materiales conductores o dieléctricos. Generalmente, cuanto más baja es la frecuencia, mayor es la guía de onda. Por ejemplo, el espacio entre la superficie terrestre y la ionosfera, la atmósfera, actúa como una guía de onda. Las dimensiones limitadas de la Tierra provocan que esta guía de onda actúe como cavidad resonante para las ondas electromagnéticas en la banda ELF. (véase Resonancia Schumann).
Las guías de onda también pueden tener dimensiones de pocos centímetros. Un ejemplo puede ser aquellas utilizadas por los satélites de EHF y por los radares.
Las guías de onda electromagnéticas se analizan resolviendo las ecuaciones de Maxwell. Estas ecuaciones tienen soluciones múltiples, o modos, que son los autofunciones del sistema de ecuaciones. Cada modo es pues caracterizado por un autovalor, que corresponde a la velocidad de propagación axial de la onda en la guía.
Los modos de propagación dependen de la longitud de onda, de la polarización y de las dimensiones de la guía. El modo longitudinal de una guía de onda es un tipo particular de onda estacionaria formado por ondas confinadas en la cavidad. Los modos transversales se clasifican en tipos distintos:
Modo TE (Transversal eléctrico), la componente del campo eléctrico en la dirección de propagación es nula.
Modo TM (Transversal magnético), la componente del campo magnético en la dirección de propagación es nula.
Modo TEM (Transversal electromagnético), la componente tanto del campo eléctrico como del magnético en la dirección de propagación es nula.
Modo híbrido, son los que sí tienen componente en la dirección de propagación tanto en el campo eléctrico como en el magnético.
En guías de onda rectangulares el modo fundamental es el TE1,0 y en guías de onda circulares es el TE1,1.
El ancho de banda de una guía de onda viene limitado por la aparición de modos superiores. En una guía rectangular, sería el TE0,1. Para aumentar dicho ancho de banda se utilizan otros tipos de guía, como la llamada "Double Ridge", con sección en forma de "H".
ANTENAS Y TORRES DE MICROONDAS
La distancia cubierta por enlaces microondas puede ser incrementada por el uso de repetidoras, las cuales amplifican y redireccionan la señal, es importante destacar que los obstáculos de la señal pueden ser salvados a través de reflectores pasivos. Las siguientes figuras muestran como trabaja un repetidor y como se ven los reflectores pasivos.
La señal de microondas transmitidas es distorsionada y atenuada mientras viaja desde el transmisor hasta el receptor, estas atenuaciones y distorsiones son causadas por una perdida de poder dependiente a la distancia, reflexión y refracción debido a obstáculos y superficies reflectoras, y a pérdidas atmosféricas.
La siguiente es una lista de frecuencias utilizadas por los sistemas de microondas:
Common Carrier Operational Fixed
2.110 2.130 GHz
1.850 1.990 GHz
2.160 2.180 GHz
2.130 2.150 GHz
3.700 4.200 GHz
2.180 2.200 GHz
5.925 6.425 GHz
2.500 2.690 GHz
10.7 11.700 GHz
6.575 6.875 GHz
12.2 12.700 GHz
Debido al uso de las frecuencias antes mencionadas algunas de las ventajas son:
· Antenas relativamente pequeñas son efectivas.
· A estas frecuencias las ondas de radio se comportan como ondas de luz, por ello la señal puede ser enfocada utilizando antenas parabólicas y antenas de embudo, además pueden ser reflejadas con reflectores pasivos.
· Ora ventaja es el ancho de banda, que va de 2 a 24 GHz.
Como todo en la vida, el uso de estas frecuencias también posee desventajas:
Las frecuencias son susceptibles a un fenómeno llamado Disminución de Multicamino (Multipath Fafing), lo que causa profundas disminuciones en el poder de las señales recibidas.
A estas frecuencias las perdidas ambientales se transforman en un factor importante, la absorción de poder causada por la lluvia puede afectar dramáticamente el Performance del canal.
COMUNICACIÓN POR SATÉLITE
Básicamente, los enlaces satelitales son iguales a los de microondas excepto que uno de los extremos de la conexión se encuentra en el espacio, como se había mencionado un factor limitante para la comunicación microondas es que tiene que existir una línea recta entre los dos puntos pero como la tierra es esférica esta línea se ve limitada en tamaño entonces, colocando sea el receptor o el transmisor en el espacio se cubre un área más grande de superficie.
El siguiente gráfico muestra un diagrama sencillo de un enlace vía satélite, nótese que los términos UPLINK y DOWNLINK aparecen en la figura, el primero se refiere al enlace de la tierra al satélite y la segunda del satélite a la tierra.
Las comunicaciones vía satélite poseen numerosas ventajas sobre las comunicaciones terrestres, la siguiente es una lista de algunas de estas ventajas:
· El costo de un satélite es independiente a la distancia que valla a cubrir.
· La comunicación entre dos estaciones terrestres no necesita de un gran número de repetidoras puesto que solo se utiliza un satélite.
· Las poblaciones pueden ser cubiertas con una sola señal de satélite, sin tener que preocuparse en gran medida del problema de los obstáculos.
· Grandes cantidades de ancho de bandas están disponibles en los circuitos satelitales generando mayores velocidades en la transmisión de voz, data y vídeo sin hacer uso de un costoso enlace telefónico.
Estas ventajas poseen sus contrapartes, alguna de ellas son:
· El retardo entre el UPLINK y el DOWNLINK esta alrededor de un cuarto de segundo, o de medio segundo para una señal de eco.
· La absorción por la lluvia es proporcional a la frecuencia de la onda.
· Conexiones satelitales multiplexadas imponen un retardo que afectan las comunicaciones de voz, por lo cual son generalmente evitadas.
Los satélites de comunicación están frecuentemente ubicados en lo que llamamos Orbitas Geosincronizadas, lo que significa que el satélite circulará la tierra a la misma velocidad en que esta rota lo que lo hace parecer inmóvil desde la tierra. Un a ventaja de esto es que el satélite siempre esta a la disposición para su uso. Un satélite para estar en este tipo de órbitas debe ser posicionado a 13.937,5 Kms. de altura, con lo que es posible cubrir a toda la tierra utilizando solo tres satélites como lo muestra la figura.
Un satélite no puede retransmitir una señal a la misma frecuencia a la que es recibida, si esto ocurriese el satélite interferiría con la señal de la estación terrestre, por esto el satélite tiene que convertir la señal recibida de una frecuencia a otra antes de retransmitirla, para hacer esto lo hacemos con algo llamado "Transponders". La siguiente imagen muestra como es el proceso.
Al igual que los enlaces de microondas las señales transmitidas vía satélites son también degradadas por la distancia y las condiciones atmosféricas.
Otro punto que cabe destacar es que existen satélites que se encargan de regenerar la señal recibida antes de retransmitirla, pero estos solo pueden ser utilizados para señales digitales, mientras que los satélites que no lo hacen pueden trabajar con ambos tipos de señales (Análogas y Digitales).
Radar
Para otros usos de este término, véase Radar (desambiguación).
Antena de radar de detección a larga distancia
El radar (término derivado del acrónimo inglés radio detection and ranging, “detección y medición de distancias por radio”) es un sistema que usa ondas electromagnéticas para medir distancias, altitudes, direcciones y velocidades de objetos estáticos o móviles como aeronaves, barcos, vehículos motorizados, formaciones meteorológicas y el propio terreno. Su funcionamiento se basa en emitir un impulso de radio, que se refleja en el objetivo y se recibe típicamente en la misma posición del emisor. A partir de este "eco" se puede extraer gran cantidad de información. El uso de ondas electromagnética con diversas longitudes de onda permite detectar objetos más allá del rango de otro tipo de emisiones (luz visible, sonido, etc.)
Entre sus ámbitos de aplicación se incluyen la meteorología, el control del tráfico aéreo y terrestre y gran variedad de usos militares.
Reflexión
Las ondas electromagnéticas se dispersan cuando hay cambios significativos en las constantes dieléctricas o diamagnéticas. Esto significa que un objeto sólido en el aire o en el vacío (es decir, un cambio en la densidad atómica entre el objeto y su entorno) producirá dispersión de las ondas de radio, como las del radar. Esto ocurre particularmente en el caso de los materiales conductores como el metal y la fibra de carbono, lo que hace que el radar sea especialmente indicado para la detección de aeronaves. En ocasiones los aviones militares utilizan materiales con sustancias resistivas y magnéticas que absorben las ondas del radar, reduciendo así el nivel de reflexión. Estableciendo una analogía entre las ondas del radar y el espectro visible, estos materiales equivaldrían a pintar algo con un color oscuro.
La reflexión de las ondas del radar varía en función de su longitud de onda y de la forma del blanco. Si la longitud de onda es mucho menor que el tamaño del blanco, la onda rebotará del mismo modo que la luz contra un espejo. Si por el contrario es mucho más grande que el tamaño del blanco, lo que ocurre es que este se polariza (separación física de las cargas positivas y negativas) como en un dipolo (véase: Dispersión de Rayleigh). Cuando las dos escalas son similares pueden darse efectos de resonancia. Los primeros radares utilizaban longitudes de onda muy elevadas, mayores que los objetivos; las señales que recibían eran tenues. Los radares actuales emplean longitudes de onda más pequeñas (de pocos centímetros o inferiores) que permiten detectar objetos del tamaño de una barra de pan.
Ecuación radar
La potencia Pr reflejada a la antena de recepción está dada por la ecuación radar:
Pr=PtGtArσF4(4π)2R2tR2r
Donde
· Pt = potencia transmitida
· Gt = ganancia de la antena de transmisión
· Ar = apertura efectiva (área) de la antena de recepción
· σ = sección transversal del radar, o coeficiente de decaimiento del objetivo
· F = factor de propagación del patrón
· Rt = distancia del transmisor al objetivo
· Rr = distancia del objetivo al receptor.
En el caso común donde el transmisor y el receptor están en el mismo lugar, Rt = Rr y el término Rt² Rr² puede ser reemplazado por R4, donde R es la distancia. Esto resulta en:
Pr=PtGtArσ(4π)2R4
Esto dice que la potencia en el receptor se reduce proporcionalmente a la cuarta potencia de la distancia, lo que significa que la potencia reflejada desde el objetivo distante es muy muy pequeña.
Polarización
El campo eléctrico de la señal que emite un radar es perpendicular a la dirección de propagación. La dirección de dicho campo determina la polarización de la onda. Los radares usan polarizaciones horizontales, verticales, lineales o circulares, en función de la aplicación. Por ejemplo, la polarización circular es adecuada para minimizar la interferencia causada por la lluvia (pero debe evitarse para radares meteorológicos que lo que buscan es cuantificar las precipitaciones). La lineal permite detectar superficies de metal. La polarización aleatoria es adecuada para detectar superficies irregulares como rocas y se usa en radares de navegación.
Centelleo
El centelleo es una fluctuación en la amplitud de un objetivo sobre la pantalla de un radar. Está estrechamente relacionado con el destello objetivo, un desplazamiento evidente del objetivo de su posición.
Interferencias
Los sistemas radar deben hacer frente a la presencia de diferentes tipos de señales indeseadas y conseguir centrarse en el blanco que realmente interesa. Dichas señales espurias pueden tener su origen en fuentes tanto internas como externas y pueden ser de naturaleza pasiva o activa. La capacidad del sistema radar de sobreponerse a la presencia de estas señales define su relación señal/ruido (SNR). Cuanto mayor sea la SNR del sistema, tanto mejor podrá aislar los objetivos reales de las señales de ruido del entorno.
Este efecto puede ser causado por un cambio del punto de reflexión eficaz sobre el objetivo, pero también tiene otras causas. Las fluctuaciones pueden ser lentas (exploración a exploración) o rápidas (pulso a pulso).
El centelleo y el destello son en realidad dos manifestaciones del mismo fenómeno.
Ruido
El ruido es una fuente interna de variaciones aleatorias de la señal, generado en mayor o menor medida por todos los componentes electrónicos. Típicamente se manifiesta en variaciones aleatorias superpuestas a la señal de eco recibida en el radar.
Cuanta menor sea la potencia con que llega la señal de interés, más difícil será diferenciarla del fondo de ruido. Por tanto, la más importante fuente de ruido aparece en el receptor, por lo que debe dedicarse un gran esfuerzo a tratar de minimizar estos factores. La figura de ruido es una medida del ruido producido por el receptor en comparación con un receptor ideal y debe ser minimizada.
4.2. Comunicaciones a través de satélites: tipos, orbitas satelitales, sistemas de comunicación por satélite, estaciones terrestres, y sistemas de posicionamiento global.
Comunicación por Satélites. Un satélite es transportado a su órbita abordo de un cohete capaz de lanzar la velocidad suficiente requerida para no verse influenciado por el campo gravitatorio terrestre.
Una vez conseguido esto, es virtualmente posible conseguir cualquier plano o altitud de la órbita mediante la utilización de modernos cohetes. El plano de la órbita se denomina inclinación.
Velocidad de la órbita:
Un satélite puede permanecer en su órbita sólo si su velocidad es lo suficientemente mayor como para vencer la gravedad y menor que la requerida para escapar de la gravedad. La velocidad del satélite es pues como un compromiso entre esos dos factores pero ha de ser absolutamente precisa para la altitud elegida.
V=K/(sqrt(r+a)) Km/s
Dónde:
V=a velocidad de la órbita en kilómetros por segundo.
a=altitud de la órbita sobre la superficie de la tierra, en Km.
r=el radio medio de la tierra, aproximadamente 6371Km.
K=630
Aunque la tierra no es perfecta y su radio puede variar, vamos a tomar que posee un valor de 6371Km. La velocidad de un satélite con altitud de 200 Km necesitará una V=177Km/s.
§ La velocidad para un satélite con una altitud de 1075km será de V=7.3km/s (satélite TRANSIT).
§ Periodo de la órbita:
El periodo que posee un satélite viene dado por la siguiente fórmula:
P=K(r+a/r)3/2 minutos donde P=periodo de una órbita en minutos. a=altitud de la órbita sobre la superficie terrestre. r=radio medio de la tierra. K=84.49.
§ El periodo para un satélite cuya altitud es de 200 Km es: P=88.45 minutos.
Clasificaciones orbitales, espaciamiento y asignaciones de frecuencia
Hay dos clasificaciones principales para los satélites de comunicaciones:
§ Hiladores (spinners)
§ Satélites estabilizadores de tres ejes.
Los satélites spinners, utilizan el movimiento angular de su cuerpo giratorio para proporcionar una estabilidad de giro. Con un estabilizador de tres ejes, el cuerpo permanece fijo en relación a la superficie de la Tierra, mientras que el subsistema interno proporciona una estabilización de giro.
Los satélites geosíncronos deben compartir espacio y espectro de frecuencia limitados, dentro de un arco específico, en una órbita geoestacionaria, aproximadamente a 22,300 millas, arriba del Ecuador. La posición en la ranura depende de la banda de frecuencia de comunicación utilizada. Los satélites trabajando, casi o en la misma frecuencia, deben estar lo suficientemente separados en el espacio para evitar interferir uno con otro. Hay un límite realista del número de estructuras satelitales que pueden estar estacionadas, en un área específica en el espacio. La separación espacial requerida depende de las siguientes variables:
§ Ancho del haz y radiación del lóbulo lateral de la estación terrena y antenas del satélite.
§ Frecuencia de la portadora de RF.
§ Técnica de codificación o de modulación usada.
§ Límites aceptables de interferencia.
§ Potencia de la portadora de transmisión.
Generalmente, se requieren de 3 a 6o de separación espacial dependiendo de las variables establecidas anteriormente.
Las frecuencias de la portadora, más comunes, usadas para las comunicaciones por satélite, son las bandas 6/4 y 14/12 GHz. El primer número es la frecuencia de subida (ascendente) (estación terrena a transponder) y el segundo número es la frecuencia de bajada (descendente) (transponder a estación terrena). Diferentes frecuencias de subida y de bajada se usan para prevenir que ocurra repetición. Entre mas alta sea la frecuencia de la portadora, más pequeño es el diámetro requerido de la antena para una ganancia específica. La mayoría de los satélites domésticos utilizan la banda 6/4 GHz. Desafortunadamente, esta banda también se usa extensamente para los sistemas de microondas terrestres. Se debe tener cuidado cuando se diseña una red satelital para evitar interferencia de, o interferencia con enlaces de microondas establecidas.
Modelos de enlace del sistema satelital
Esencialmente, un sistema satelital consiste de tres secciones básicas: una subida, un transponder satelital y una bajada.
Modelo de subida
El principal componente dentro de la sección de subida satelital, es el transmisor de estación terrena. Un típico transmisor de la estación terrena consiste de un modulador de IF, un convertidor de microondas de IF a RF, un amplificador de alta potencia (HPA) y algún medio para limitar la banda del último espectro de salida (por ejemplo, un filtro pasa-bandas de salida). El modulador de IF se convierte la IF convierte las señales de banda base de entrada a una frecuencia intermedia modulada en FM, en PSK o en QAM. El convertidor (mezclador y filtro pasa-bandas) convierte la IF a una frecuencia de portadora de RF apropiada. El HPA proporciona una sensibilidad de entrada adecuada y potencia de salida para propagar la señal al transponder del satélite. Los HPA comúnmente usados son klystons y tubos de onda progresiva.
Transponder
Un típico transponder satelital consta de un dispositivo para limitar la banda de entrada (BPF), un amplificador de bajo ruido de entrada (LNA), un traslador de frecuencias, un amplificador de potencia de bajo nivel y un filtro pasa-bandas de salida. Este transponder es un repetidor de RF a RF. Otras configuraciones de transponder son los repetidores de IF, y de banda base, semejantes a los que se usan en los repetidores de microondas.
Modelo de bajada
Un receptor de estación terrena incluye un BPF de entrada, un LNA y un convertidor de RF a IF. Nuevamente, el BPF limita la potencia del ruido de entrada al LNA. El LNA es un dispositivo altamente sensible, con poco ruido, tal como un amplificador de diodo túnel o un amplificador paramétrico. El convertidor de RF a IF es una combinación de filtro mezclador pasa bandas que convierte la señal de RF recibida a una frecuencia de IF.
Enlaces cruzados
Ocasionalmente, hay aplicaciones en donde es necesario comunicarse entre satélites. Esto se realiza usando enlaces cruzados entre satélites o enlaces intersatelitales (ISL). Una desventaja de usar un ISL es que el transmisor y receptor son enviados ambos al espacio. Consecuentemente la potencia de salida del transmisor y la sensibilidad de entrada del receptor se limitan.