6.5. Transmisores y receptores ópticos.

En las comunicaciones a través de fibras ópticas los transmisores y receptores ópticos son los dispositivos encargados de tomar la señal eléctrica en forma de voltaje o corriente y convertirla en una señal luminosa con el objetivo de transportar información a través de la fibra. La complejidad del transmisor y receptor depende del tipo de señal o información que se quiere enviar, si es análoga o digital, el tipo de codificación, y de la clase de fuente luminosa que se va a modular.

Básicamente, el detector es un dispositivo que convierte fotones en electrones, un receptor se compone de un detector y de los circuitos necesarios asociados que lo capaciten para funcionar en un sistema de comunicaciones ópticas, transformando señales de frecuencias ópticas a frecuencias inferiores, con la mínima adición de ruido indeseable y con un ancho de banda suficiente para no distorsionar la información contenida en la señal (analógica o digital).

Emisores ópticos

Entre los emisores ópticos tenemos a los diodos LED y los diodos LASER.

      Diodos LED

Son fuentes de luz con emisión espontánea o natural (no coherente), son diodos semiconductores de unión p-n que para emitir luz se polarizan directamente.

La energía luminosa emitida por el LED es proporcional al nivel de corriente de la polarización del diodo.

En la figura anterior vemos la representación característica de potencia óptica- corriente de polarización.

Existen dos tipos de LED:

  • LED de superficie que emite la luz a través de la superficie de la zona activa.
  • LED de perfil que emite a través de la sección transversal (este tipo es mas direccional)

     Diodos LASER (LD)

Son fuentes de luz coherente de emisión estimulada con espejos semireflejantes formando una cavidad resonante, la cual sirve para realizar la retroalimentación óptica, así como el elemento de selectividad (igual fase y frecuencia).

La emisión del LD es siempre de perfil, estos tienen una corriente de umbral y a niveles de corriente arriba del umbral la luz emitida es coherente, y a niveles menores al umbral el LD emite luz incoherente como un LED.

La figura muestra una comparación de los espectros emitidos por un LED y un LD.

Como las características de los espejos son funciones tanto de la temperatura, como de la operación; la característica potencia óptica- corriente de polarización es función de la temperatura y sufre un cierto tipo de envejecimiento. Una representación gráfica de la corriente de umbral, del proceso de envejecimiento se ilustra en la a continuación.

Receptor Óptico

El propósito del receptor óptico es extraer la información contenida en una portadora óptica que incide en el fotodetector. En los sistemas de transmisión analógica el receptor debe amplificar la salida del fotodetector y después demodularla para obtener la información. En los sistemas de transmisión digital el receptor debe producir una secuencia de pulsos (unos y ceros) que contienen la información del mensaje transmitido.

Una configuración básica es el receptor de detección directa, el fotodetector convierte el flujo de los fotones incidentes en un flujo de electrones. Después esta corriente es amplificada y procesada. Existen dos tipos de fotodiodos usuales para recepción óptica, fotodiodo PIN y fotodiodo de avalancha APD.

 

Modelos de un típico receptor óptico con detección directa

 

En la práctica, para los receptores de detección directa con fotodiodos PIN, el factor limitante de la sensibilidad del receptor es el ruido térmico, generado en la salida del fotodiodo. Existe dos  alternativas para superar esta limitación, una  es el uso de fotodiodo de avalancha APD, donde el mecanismo de multiplicación de la corriente fotogenerada en el fotodiodo amplifica la señal fotodetectado. La segunda alternativa es la utilización de un pre-amplificador óptico antes del fotodetector, para amplificar la señal óptica antes de la detección.

Modelo  de un típico receptor óptico con detección directa utilizando un pre-amplificador óptico

Una configuración más compleja de receptor óptico es el empleo de los receptores de detección coherente, con el nivel de potencia del oscilador local tan alto que el ruido térmico se hace mucho menor que el producto del batimiento entre la señal del oscilador local y la señal recibida. La figura presenta el esquema simplificado de detección coherente.

Modelo  de un típico receptor óptico con detección coherente

En el caso del esquema coherente, la señal detectada posee una frecuencia intermediaria dada por:

Donde:

fFI es la frecuencia intermediaria

fS es la frecuencia de la señal recibida y

fLO es la frecuencia del oscilador local.

En los sistemas homodinos, la frecuencia intermediaria es igual a cero y, en los heterodinos, ella es diferente de cero, o sea, el espectro está simplemente trasladado de la frecuencia óptica para la frecuencia intermediaria. Por su parte, en el sistema homodino, como la frecuencia intermediaria es nula, ocurre una concentración de las energías de las dos bandas laterales en la única banda existente.

Debemos considerar los mismos parámetros básicos para diferenciar las características de los receptores analógicos y digitales. Los parámetros de los receptores analógicos son la linealidad  odistorsión y el ancho de banda, mientras que para receptores digitales la linealidad no es importante y el ancho de banda se reemplaza por la máxima velocidad de transmisión. La potencia de ruido equivalente de un receptor es generalmente mayor que en la de un fotodetector sólo. Otras consideraciones son la relación señal/ruido para los receptores analógicos y la tasa de errores(número de bits equivocados recibidos) para receptores digitales. Se debe notar que la fuente principal de ruido en el receptor es la etapa amplificadora que sigue al fotodetector.

Debemos considerar las características eléctricas de salida (codificación para transmisores digitales y nivel e impedancia de salida para las analógicas). Muchos receptores tienen circuitos de control automático de ganancia (CAG) para mantener el mismo nivel de salida cualquiera sea el nivel de entrada. Dado que el rango del nivel de entrada esta limitado por el fotodetector, hay una potencia máxima sobre la cual se satura y una potencia mínima que representa la mínima detectable. Esta última es importante para determinar la máxima longitud de fibra que se puede usar sin repetidores. Otras características ópticas de los fotodetectores tales como el rango de longitudes de onda de trabajo y el tipo de encapsulado deben ser considerados al elegir.

Los receptores ópticos actuales se basan en uno de los dos tipos de detectores: el fotodiodo de avalancha APD y el diodo PIN seguido por un preamplificador de entrada FET (Transistor de Efecto de Campo). Para señales digitales binarias, el caso más común basta con 22dB de relación señal/ruido. Un APD de calidad (de bajo ruido) podría dar una sensibilidad superior. Las relaciones señal eficaz de portadora/ruido eficaz en señales analógicas han de estar entre los 30dB y los 65dB.

Si las señales están moduladas en intensidad, el ruido dominante es el granular (shot) asociado a la corriente media de la señal, para relaciones portadora/ruido mayores de unos 40dB. En estos casos la mejor opción son los receptores PIN-FET.

Ruido en los receptores ópticos

La capacidad de un receptor óptico para detectar señales de luz débiles depende de su sensibilidad y en particular del ruido propio. Los agentes causantes del ruido son la señal óptica, el diodo en sí y el circuito eléctrico que le sigue. El límite en cuanto a detección se da cuando la suma de todas las corrientes de ruido (cuántico, de la corriente de oscuridad, granular, térmico) iguala a la corriente de la señal a la salida del receptor. Esta potencia equivalente al ruido suele ser sin embargo menos importante que la potencia óptica (mínima) requerida para garantizar la deseada relación señal/ruido o tasa de error.

 

Pueden presentarse alguna o todas las fuentes de ruido siguientes:

-          Ruido granular en la corriente media de la señal.

-          Exceso de ruido granular en la corriente media de la señal, debido al ruido en la multiplicación de avalancha.

-          Ruido creado por la corriente de oscuridad del detector.

-          Ruido procedente del amplificador.

 

Incluso con un APD perfecto, hay un límite fundamental en el cual el rendimiento sólo depende del ruido granular en la corriente media de la señal. Corrientemente se le denomina límite cuántico, ya que los electrones de la corriente de señal están relacionados directamente con los fotones ópticos. Se puede demostrar que deben recibirse al menos 21 fotones para un “l” si se quiere obtener una tasa de error de 10-9 en sistemas digitales.

Detectores ópticos

Son los encargados de transformar las señales luminosas en señales eléctricas. En los sistemas de transmisión analógica el receptor debe amplificar la salida del fotodetector y después demodularla para obtener la información. En los sistemas de transmisión digital el receptor debe producir una secuencia de pulsos (unos y ceros) que contienen la información del mensaje transmitido.

Las características principales que debe tener son:

  • Sensibilidad alta a la longitud de onda de operación
  • Contribución mínima al ruido total del receptor
  • Ancho de banda grande (respuesta rápida)

Estos fotodetectores son diodos semiconductores que operan polarizados inversamente.  Durante la absorción de la luz, cuando un fotodetector es iluminado, las partículas de energía luminosa, también llamadas fotones, son absorbidas generando pares electrón - hueco, que en presencia de un campo eléctrico producen una corriente eléctrica.

Estos dispositivos son muy rápidos, de alta sensibilidad y pequeñas dimensiones.  La corriente eléctrica generada por ellos es del orden de los nanoamperios y por lo tanto se requiere de una amplificación  para manipular adecuadamente la señal.